Distant cis-regulatory elements in human skeletal muscle differentiation.

نویسندگان

  • Rachel Patton McCord
  • Vicky W Zhou
  • Tiffany Yuh
  • Martha L Bulyk
چکیده

Identifying gene regulatory elements and their target genes in human cells remains a significant challenge. Despite increasing evidence of physical interactions between distant regulatory elements and gene promoters in mammalian cells, many studies consider only promoter-proximal regulatory regions. We identify putative cis-regulatory modules (CRMs) in human skeletal muscle differentiation by combining myogenic TF binding data before and after differentiation with histone modification data in myoblasts. CRMs that are distant (>20 kb) from muscle gene promoters are common and are more likely than proximal promoter regions to show differentiation-specific changes in myogenic TF binding. We find that two of these distant CRMs, known to activate transcription in differentiating myoblasts, interact physically with gene promoters (PDLIM3 and ACTA1) during differentiation. Our results highlight the importance of considering distal CRMs in investigations of mammalian gene regulation and support the hypothesis that distant CRM-promoter looping contacts are a general mechanism of gene regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and biochemical analysis of cis regulatory elements within the keratinocyte enhancer region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle.

Using linker scanning mutational analysis, we recently identified potential cis regulatory elements contained within the 5' upstream regulatory region (URR) domain and auxiliary enhancer (AE) region of the human papillomavirus type 31 (HPV31) URR involved in the regulation of E6/E7 promoter activity at different stages of the viral life cycle. For the present study, we extended the linker scann...

متن کامل

Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers

We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. T...

متن کامل

Temporal analysis of reciprocal miRNA-mRNA expression patterns predicts regulatory networks during differentiation in human skeletal muscle cells.

microRNAs (miRNAs) are short noncoding RNAs that regulate gene expression through posttranscriptional repression of target genes. miRNAs exert a fundamental level of control over many developmental processes, but their role in the differentiation and development of skeletal muscle from myogenic progenitor cells in humans remains incompletely understood. Using primary cultures established from h...

متن کامل

Close sequence comparisons are sufficient to identify human cis-regulatory elements.

Cross-species DNA sequence comparison is the primary method used to identify functional noncoding elements in human and other large genomes. However, little is known about the relative merits of evolutionarily close and distant sequence comparisons. To address this problem, we identified evolutionarily conserved noncoding regions in primate, mammalian, and more distant comparisons using a unifo...

متن کامل

Dissection of Myogenic Differentiation Signatures in Chickens by RNA-Seq Analysis

A series of elaborately regulated and orchestrated changes in gene expression profiles leads to muscle growth and development. In this study, RNA sequencing was used to profile embryonic chicken myoblasts and fused myotube transcriptomes, long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs) at four stages of myoblast differentiation. Of a total of 2484 lncRNA transcripts, 2288 were long i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genomics

دوره 98 6  شماره 

صفحات  -

تاریخ انتشار 2011